NAM2019
  • NAM2019
    • Registration
    • Key Dates & Outline Schedule
    • Practical Information
    • Exhibitors
    • Grants & Bursaries
    • Contacts
  • Science
    • Science Programme
    • Parallel Sessions
    • Plenary Talks
    • Community Session
    • Special Lunches
    • Posters
    • Presenter Guidelines
  • Social
    • What's On
    • Welcome Reception
    • RAS Awards Dinner
  • Media
  • Outreach
    • Outreach and Education Day
    • Fringe Event
    • School Visit Day
  • Lancaster
    • Travel
    • Accommodation
    • Childcare
    • Campus Map
    • About Lancaster
    • Code of Conduct
  • NAM2019
    • Registration
    • Key Dates & Outline Schedule
    • Practical Information
    • Exhibitors
    • Grants & Bursaries
    • Contacts
  • Science
    • Science Programme
    • Parallel Sessions
    • Plenary Talks
    • Community Session
    • Special Lunches
    • Posters
    • Presenter Guidelines
  • Social
    • What's On
    • Welcome Reception
    • RAS Awards Dinner
  • Media
  • Outreach
    • Outreach and Education Day
    • Fringe Event
    • School Visit Day
  • Lancaster
    • Travel
    • Accommodation
    • Childcare
    • Campus Map
    • About Lancaster
    • Code of Conduct

Poster

id
Building a Raspberry Pi magnetometer network for schools in the UK
EngagementSTP
Ciaran
Beggan
Date Submitted
2019-03-14 16:21:19
British Geological Survey
Ciaran Beggan (British Geological Survey), Steve Marple (Lancaster University)
As computing and geophysical sensor components have become increasingly affordable over the past decade, it is now possible to design and build a cost-effective system for monitoring the Earth's natural magnetic field variations, in particular for space weather events.

Modern fluxgate magnetometers are sensitive down to the sub-nanoTesla (nT) level, which far exceeds the level of accuracy required to detect very small variations of the external magnetic field. When the popular Raspberry Pi single-board computer is combined with a suitable digitiser it can be used as a low-cost data logger. We adapted off-the-shelf components to design a magnetometer system for schools and developed bespoke Python software to build a network of low-cost magnetometers across the UK.

We describe the system and software and how it was deployed to schools around the UK. We show the results recorded by the systems from September 2017, one of the largest geomagnetic storms of the current solar cycle.

RAS Logo

Lancaster University Logo

STFC logo

Science Programme

  • Monday
  • Tuesday
  • Wednesday
  • Thursday
  • Posters

All attendees are expected to show respect and courtesy to other attendees and staff, and to adhere to the NAM Code of Conduct. To report harassment or violation of the code of conduct please click here.

© 2022 Royal Astronomical Society

Login