SuperDARN observations during geomagnetic storms , geomagnetically active times and enhanced solar wind driving
Monday
Abstract details
id
SuperDARN observations during geomagnetic storms , geomagnetically active times and enhanced solar wind driving
Date Submitted
2019-03-14 11:54:51
Maria-Theresia
Walach
Lancaster University
Electrodynamics and energetics of the ionosphere-thermosphere system
Talk
M.-T. Walach (Lancaster University), A. Grocott (Lancaster University)
The Super Dual Auroral Radar Network (SuperDARN) was built to study ionospheric convection at Earth and has in recent years been expanded to lower latitudes to observe ionospheric flows over a larger latitude range. This enables us to study extreme space weather events, such as geomagnetic storms, which are a global phenomenon, on a large scale (from the pole to magnetic latitudes of 40 degrees).
We study the backscatter observations from the SuperDARN radars during all geomagnetic storm phases from the most recent solar cycle and compare them to other active times to understand radar backscatter and ionospheric convection characteristics during extreme conditions and to discern differences specific to geomagnetic storms and other geomagnetically active times.
We show that there are clear differences in the number of measurements the radars make, the maximum flow speeds observed and the locations where they are observed during the initial, main and recovery phase. We show that these differences are linked to different levels of solar wind driving.
We also show that when studying ionospheric convection during geomagnetically active times, it is crucial to consider data at mid-latitudes, as we find that during 19% of storm-time the equatorward boundary of the convection is located below 50 degrees of magnetic latitude.
All attendees are expected to show respect and courtesy to other attendees and staff, and to adhere to the NAM Code of Conduct. To report harassment or violation of the code of conduct please click here.